Synthesis of Some 10-Alkyl-5-deazaflavins and Their Use in the Oxidation of Benzyl Alcohol and Benzylamine

Kazunori Kuroda, Tomohisa Nagamatus, Yoshiharu Sakuma and Fumio Yoneda*

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan Received October 28, 1981

A series of 3-methyl- and 3-phenyl-10-alkyl-5-deazaflavins were synthesized in order to examine whether the length of 10-alkyl-substituents influences the oxidizing power.

J. Heterocyclic Chem., 19, 929 (1982).

Recently we reported that 5-deazaflavins (1) were considered to be NAD(P)* models which oxidized alcohols under weakly basic conditions and thereupon exhibited some recycling in the oxidation giving carbonyl compounds in more than 100% yield. Furthermore, the effect of the substituents on the benzene moiety of 5-deazaflavins was discussed in terms of the oxidizing ability toward benzyl alcohol (1). The present paper describes the synthesis of a series of 10-alkyl-5-deazaflavins and the influence of the length of their 10-alkyl-substituents upon the oxidizing power.

Synthesis of 10-Alkyl-5-deazaflavins.

Preparation of 10-alkyl-3-methyl-5-deazaflavins (Ia-d) (2) and 10-alkyl-3-phenyl-5-deazaflavins (IIa-d) (3) was described previously. Other 5-deazaflavins (Ie-h and IIe-h) were similarly synthesized by the condensation of 6-chloro-5-formyl-3-methyluracil (2) (for I) and 6-chloro-5-formyl-3-phenyluracil (3) (for II) with the corresponding N-alkylanilines in dimethylformamide. N-n-Hexylaniline, N-n-

octylaniline, N-n-dodecylaniline and N-n-octadecylaniline were prepared by the known procedures (4,5). The structures of Ie-h and IIe-h were derived on the basis of elemental analyses (Table I) and nuclear magnetic resonance data (Table II).

Oxidation of Benzyl Alcohol and Benzylamine by the 10-Alkyl-5-deazaflavins.

Table III shows the yields of benzaldehyde in the oxidation of benzyl alcohol by the 10-alkyl-5-deazaflavins (Ie-h and IIe-h) obtained above and also by the 5-deazaflavins (Ia-d and IIa-d) prepared previously for comparison. No strong substituent effect at the 10-position was observed,

but the 5-deazaflavins possessing higher alkyl groups showed slightly stronger power than the 5-deazaflavins possessing lower alkyl groups in the oxidation of benzyl alcohol.

Table I 10-Alkyl-5-deazaflavins

	R۱	R²		Мр	Formula	Analysis (%)					
Compound			Yield			Calcd.				Found	
No.			(%)	(°C) (a)		С	H	N	С	Н	N
Ie	CH ₃	n-C ₆ H ₁₃	50	201	$C_{18}H_{21}N_3O_2$	69.43	6.80	13.50	69.32	6.70	13.67
If	CH ₃	n-C ₂ H ₁₇	62	196	$C_{20}H_{25}N_3O_2$	70.77	7.43	12.38	70.69	7.41	12.22
Ig	CH,	n-C ₁₂ H ₂₅	53	177	$C_{24}H_{33}N_3O_2$	72.87	8.41	10.62	72.92	8.41	10.74
Ih	CH,	n-C ₁₈ H ₃₇	51	161	$C_{30}H_{45}N_3O_2$	75.11	9.46	8.76	75.10	9.45	8.70
He	C ₆ H ₅	n-C ₆ H ₁₃	42	234	$C_{23}H_{23}N_3O_2$	73.97	6.21	11.25	73.78	6.15	11.22
IIf	C_6H_5	$n-C_0H_{17}$	45	175	$C_{25}H_{27}N_3O_2$	74.78	6.78	10.47	74.48	6.72	10.55
IIg	$C_{6}H_{5}$	n-C12H25	49	173	$C_{29}H_{35}N_3O_2$	76.11	7.71	9.18	76.08	7.64	9.10
IIh	C ₆ H ₅	$n-C_{18}H_{37}$	47	157	$C_{35}H_{47}N_3O_2$	77.59	8.75	7.76	77.54	8.86	7.81

Compound

C_s-H)

No. Ie

Next, the oxidation of benzylamine by I and II was carried out under aqueous conditions. Compounds I and II showed strong oxidizing ability toward benzylamine to give benzaldehyde even in the presence of water. In general, compounds I showed stronger ability than compounds II in the oxidation of benzylamine. However, no significant influence of the length of 10-alkyl-substitutents upon the oxidizing power was observed.

EXPERIMENTAL

Melting points were taken on a Yanagimoto micro-melting point apparatus and are uncorrected. Identity of the compounds was confirmed by comparison of the ir spectra determined in Nujol on a JASCO IR-Al spectrometer. The nmr spectra were determine with a Hitachi R-24B spectrometer (with tetramethylsilane as an internal standard).

10-Alkyl-5-deazaflavins (Ie-h and IIe-h). General Procedure.

A mixture of a 6-chloro-5-formyluracil (0.008 mole) and an N-alkylaniline (0.008 mole) in dry dimethylformamide (10 ml) was heated at 90°

Table II

NMR Data for the 10-Alkyl-5-deazaflavins

δ (CH,COOH) ppm

0.98 (t, J = 7, N_{10} -(CH₂)₅-CH₃), 1.53 (m, N_{10} -CH₂-(CH₂)₄-CH₃),

	3.65 (s, N_3 -CH ₃), 4.90 (m, N_{10} -CH ₂ -(CH ₂) ₄ -CH ₃), 7.80-8.63 (m, ArH), 9.75 (s, C ₅ -H)
If	0.93 (t, J = 7, N_{10} -(CH ₂) ₇ -CH ₃), 1.42 (m, N_{10} -CH ₂ -(CH ₂) ₆ -CH ₃), 3.63 (s, N_3 -CH ₃), 4.90 (m, N_{10} -CH ₂ -(CH ₂) ₆ -CH ₃), 7.77-8.57 (m, ArH), 9.70 (s, C ₅ -H)
Ig	0.92 (t, J = 7, N ₁₀ -(CH ₂) ₁₁ -CH ₃), 1.37 (m, N ₁₀ -CH ₂ -(CH ₂) ₁₀ -CH ₃), 3.67 (s, N ₃ -CH ₃), 4.98 (m, N ₁₀ -CH ₂ -(CH ₂) ₁₀ -CH ₃), 7.85-8.68 (m, ArH), 9.83 (s, C ₅ -H)
Ih	0.90 (t, J = 7, N_{10} -(CH ₂) ₁₇ -CH ₃), 1.33 (m, N_{10} -CH ₂ -(CH ₂) ₁₆ -CH ₃), 3.63 (s, N_3 -CH ₃), 4.92 (m, N_{10} -CH ₂ -(CH ₂) ₁₆ -CH ₃), 7.78-8.57 (m, ArH), 9.72 (s, C ₅ -H)
He	0.95 (t, J = 7, N_{10} -(CH ₂) ₅ -CH ₃), 1.52 (m, N_{10} -CH ₂ (CH ₂) ₄ -CH ₃), 5.00 (m, N_{10} -CH ₂ (CH ₂) ₄ -CH ₃), 7.81-8.65 (m, ArH), 9.80 (s, C ₅ -H)
IIf	0.90 (t, J = 7, N_{10} -(CH ₂) ₇ -CH ₃), 1.37 (m, N_{10} -CH ₂ (CH ₂) ₆ -CH ₃), 5.02 (m, N_{10} -CH ₂ (CH ₂) ₆ -CH ₃), 7.20-8.63 (m, ArH), 9.80 (s, C ₅ -H)
IIg	0.90 (t, J = 7, N_{10} (CH ₂) ₁₁ ·CH ₃), 1.35 (m, N_{10} -CH ₂ ·(CH ₂) ₁₀ ·CH ₃), 4.98 (m, N_{10} -CH ₂ ·(CH ₂) ₁₀ -CH ₃), 7.13-8.63 (m, ArH), 9.77 (s,

IIh 0.93 (t, J = 7, N_{10} -(CH₂)₁₇-CH₃), 1.38 (m, N_{10} -CH₂(CH₂)₁₆-CH₃), 5.03 (m, N_{10} -CH₂(CH₂)₁₆-CH₃), 7.20-8.70 (m, ArH), 9.83 (s, C₅-H)

for 3 hours with stirring. After cooling, the reaction mixture was diluted with a small amount of ethanol. The crystals which separated were collected by filtration and recrystallized from ethanol to give pale yellow needles.

Table III
Oxidation of Benzyl Alcohol by 10-Alkyl-5-deazaflavins

			Yield of Benzaldehyde (%)					
Compound No.	R¹	R²	1h	3h	5h	10h		
la	CH ₃	CH ₃	39	108	139	224		
Ib	CH ₃	C_2H_5	55	149	220	318		
Ic	CH ₃	$n-C_3H_7$	62	141	177	262		
Id	CH ₃	n-C ₄ H ₉	57	138	169	254		
Ie	CH ₃	n-C ₆ H ₁₃	119	301	378	400		
If	CH ₃	n-C ₈ H ₁₇	166	294	297	314		
Ig	CH ₃	$n-C_{12}H_{25}$	164	190	278	315		
I h	CH ₃	n-C ₁₈ H ₃₇	154	184	207	301		
IIa	C_6H_5	CH ₃	55	92	101	128		
IIb	C_6H_5	C_2H_5	78	112	149	153		
IIc	C ₆ H ₅	n-C ₃ H ₇	125	145	146	144		
IId	C_6H_5	n-C ₄ H ₉	86	116	125	136		
IIe	C ₆ H ₅	n-C ₆ H ₁₃	125	280	305	323		
IIf	C ₆ H ₅	$n-C_8H_{17}$	206	230	264	299		
IIg	C_6H_5	$n \cdot C_{12} H_{25}$	230	236	284	308		
IIĥ	C ₆ H ₅	$n-C_{18}H_{37}$	184	284	302	318		

Notes

Table IV
Oxidation of Benzylamine by 10-Alkyl-5-deazaflavins

Compound No.	R¹	R ²	Yield (%) (a)	Compound No.	R¹	R²	Yield (%) (a)
Ib	CH.	C ₂ H ₅	318	IIa	C ₆ H ₅	C_2H_5	143
Id	CH,	n-Ĉ₄Ĥ。	396	IId	C_6H_5	n-C ₄ H ₉	131
Ie	CH,	n-C ₆ H ₁₃	571	He	C ₆ H ₅	$n-C_6H_{13}$	162
If	CH,	$n \cdot C_8 H_{17}$	488	IIg	C ₆ H ₅	$n-C_{12}H_{25}$	226
lg	CH,	$n-C_{12}H_{25}$	467	IIĥ	C_6H_5	n-C ₁₈ H ₃₇	144
Ĭĥ	CH.	n-C, H,	656				

(a) Yield of benzaldehyde after 5 hours under aqueous conditions.

Autorecycling Oxidation of Benzyl Alcohol to Benzaldehyde by 10-Alkyl-5-deazaflavins.

A suspension of a 10-alkyl-5-deazaflavin (0.0004 mole), benzyl alcohol (1 g, 0.0093 mole) and potassium carbonate (0.001 mole) was stirred at 90° under aerobic conditions. After 1, 3, 5, 10 hours, aliquots of the reaction mixture (10 μ l) were collected, diluted five-fold with ethanol, and analyzed by gas chromatography. The gas chromatography specifications are as follows: sample volume, 1 μ l; column, silicone SE-30 2% Chromosorb WAW (60-80 mesh) in a metal column (3 mm \times 1 m); internal standard, cycloheptanol.

Oxidation of Benzylamine by 10-Alkyl-5-deazaflavins. General Procedure.

A mixture of 10-alkyl-5-deazaflavin (0.00033 mole), benzylamine (1 g, 0.01 mole) and water (1 ml) was heated at 100° for 5 hours under stirring. The reaction mixture was diluted with ether (3 ml), and the separated 10-alkyl-5-deazaflavin was recovered by filtration. The filtrate was

treated with a saturated solution of 2,4-dinitrophenylhydrazine in 2N hydrochloric acid to cause the separation of benzaldehyde 2,4-dinitrophenylhydrazone, mp 237°.

Acknowledgement.

This was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

REFERENCES AND NOTES

- (1) F. Yoneda, K. Mori, S. Matsuo, Y. Kadokawa and Y. Sakuma, J. Chem. Soc., Perkin Trans. I, 1836 (1981).
 - (2) F. Yoneda, Y. Sakuma, S. Mizumoto and R. Ito, ibid., 1805 (1976).
- (3) F. Yoneda, K. Mori, M. Ono, Y. Kadokawa, E. Nagao and H. Yamaguchi, Chem. Pharm. Bull., 28, 3514 (1980).
 - (4) W. J. Hickinbottom, J. Chem. Soc., 1119 (1937).
 - (5) S. Alder, L. Haskelberg and F. Bergmann, ibid., 576 (1940).